Author Affiliations
Abstract
In the recent decade, single-shot ultrafast optical imaging by active detection, called single-shot active ultrafast optical imaging (SS-AUOI) here, has made great progress, e.g., with a temporal resolution of 50 fs and a frame rate beyond 10 trillion frames per second. Now, it has become indispensable for charactering the nonrepeatable and difficult-to-reproduce events and revealing the underlying physical, chemical, and biological mechanisms. On the basis of this delightful status, we would like to make a review of SS-AUOI. On the basis of a brief introduction of SS-AUOI, our review starts with discussing its characteristics and then focuses on the survey and prospect of SS-AUOI technology.
Ultrafast Science
2023, 3(1): 0020
朱启凡 1,2蔡懿 1,2曾选科 1,2龙虎 1,2[ ... ]陆小微 1,2,**
作者单位
摘要
1 深圳大学 物理与光电工程学院 深圳市微纳光子信息技术重点实验室,深圳 518060
2 深圳大学 物理与光电工程学院 光电子器件与系统教育部与广东省重点实验室,深圳 518060
现有极高速成像系统存在元件复杂、系统庞大以及视场受限的问题。基于螳螂虾小眼和复眼结构提出一种结构紧凑的极高速成像方法,可应用于多种视场和时间范围。仿生极高速成像仿生微绒毛阵列结构,以条纹结构光照明和空间角分复用为基础,实现图像的压缩和瞬态事件时序图像的重现。仿生螳螂虾小眼结构,可以实现视场极高速成像;而复眼系统结构上有小眼系统拼接组成,可以突破限制现大视场极高速成像。时间延迟结构与照明成像光路分离,可以实现飞秒至皮秒时间尺度的瞬态事件记录。因此,仿生多视场极高速成像理论上可以应用于各种视场的成像,仿真实验的摄影频率可以达到1.2×1013 帧/s,还原图像分辨率可以达到80.6 lp/mm。仿生极高速成像为大范围、群体性瞬态事件的探测提供了可能,例如光在散射介质中的传播、随机运动等,并且其结构紧凑,为极高速成像仪器的小型化、轻量化打下基础。
成像系统 极高速成像 仿生复眼和小眼 结构光照明 空间角分复用 Imaging systems Ultrafast imaging Bionic compound and ommatidium Structured light illumination Spatial angular division multiplexing 
光子学报
2023, 52(1): 0111001
作者单位
摘要
深圳大学物理与光电工程学院,广东 深圳 518060
在现有单次测量极高速成像方法中,直接成像方法的分辨率高但探测系统复杂,而计算成像方法探测系统简单但易损失空间分辨率。因此,提出一种基于偏振编码的极高速成像技术。所提成像系统利用半波片阵列和偏振片阵列对入射飞秒脉冲、出射飞秒脉冲和动态事件进行偏振编码,并通过线性方程组解码极高速动态的时序图像。通过构建光学模型并仿真,精确还原了多幅图像,验证了所提方案的可行性,理论摄影频率在1013 frame/s以上,本征空间分辨率可达114 lp/mm。所提成像系统结合了直接成像和计算成像系统的优势:线性方程组精确求解,不会导致光学系统分辨率损失;时序图像叠加使探测结构只需分光不需要对不同时刻的图像进行空间上的分离,简化了探测器的结构。该极高速成像系统的时间分辨率仅受脉冲宽度限制,可以实现飞秒级动态事件的探测,并且随着脉冲宽度的缩短,其时间分辨率可以得到进一步提升。
成像系统 偏振编码 极高速成像 线性方程组 时序图像 飞秒脉冲 
光学学报
2022, 42(20): 2011002
Author Affiliations
Abstract
1 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Physics and Optoelectronic Engineering, , Shenzhen 518060, China
2 College of Electronics and Information Engineering, , Shenzhen 518060, China
Applying an ultrafast vortex laser as the pump, optical parametric amplification can be used for spiral phase-contrast imaging with high gain, wide spatial bandwidth, and high imaging contrast. Our experiments show that this design has realized the 1064 nm spiral phase-contrast idler imaging of biological tissues (frog egg cells and onion epidermis) with a spatial resolution at several microns level and a superior imaging contrast to both the traditional bright- or dark-field imaging under a weak illumination of 7 nW/cm2. This work provides a powerful way for biological tissue imaging in the second near-infrared region.
optical parametric amplification ultrafast vortex laser pulse spatial resolution phase-contrast imaging 
Chinese Optics Letters
2022, 20(10): 100003
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2 College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
3 e-mail: xuankezeng@szu.edu.cn
This paper presents a novel design for single-shot terahertz polarization detection based on terahertz time-domain spectroscopy (THz-TDS). Its validity has been confirmed by comparing its detection results with those of the THz common-path spectral interferometer through two separate measurements for the orthogonal components. Our results also show that its detection signal-to-noise ratios (SNRs) are obviously superior to those of the 45° optical bias THz-TDS by electro-optical sampling due to its operation on common-path spectral interference rather than the polarization-sensitive intensity modulation. The setup works without need of any optical scan, which does not only save time, but also efficiently avoids the disturbances from the fluctuations of the system and environment. Its single-shot mode allows it to work well for the applications with poor or no repeatability.
Photonics Research
2022, 10(6): 06001374
Author Affiliations
Abstract
1 Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen Key Lab of Micro-Nano Photonic Information Technology, Shenzhen, China
2 Shenzhen University, College of Electronic Information Engineering, Shenzhen, China
3 Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec, Canada
We report a framing imaging based on noncollinear optical parametric amplification (NCOPA), named FINCOPA, which applies NCOPA for the first time to single-shot ultrafast optical imaging. In an experiment targeting a laser-induced air plasma grating, FINCOPA achieved 50 fs-resolved optical imaging with a spatial resolution of ~83 lp / mm and an effective frame rate of 10 trillion frames per second (Tfps). It has also successfully visualized an ultrafast rotating optical field with an effective frame rate of 15 Tfps. FINCOPA has simultaneously a femtosecond-level temporal resolution and frame interval and a micrometer-level spatial resolution. Combining outstanding spatial and temporal resolutions with an ultrahigh frame rate, FINCOPA will contribute to high-spatiotemporal resolution observations of ultrafast transient events, such as atomic or molecular dynamics in photonic materials, plasma physics, and laser inertial-confinement fusion.
ultrafast imaging spatiotemporal resolution frame rate noncollinear optical parametric amplification 
Advanced Photonics
2020, 2(5): 056002
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen518060, China
2 College of Electronic and Information Engineering, Shenzhen University, Shenzhen518060, China
A tunable ultrafast intensity-rotating optical field is generated by overlapping a pair of 20 Hz, 800 nm chirped pulses with a Michelson interferometer (MI). Its rotating rate can be up to 10 trillion radians per second ($\text{Trad}/\text{s}$), which can be flexibly tuned with a mirror in the MI. Besides, its fold rotational symmetry structure is also changeable by controlling the difference from the topological charges of the pulse pair. Experimentally, we have successfully developed a two-petal lattice with a tunable rotating speed from $3.9~\text{Trad}/\text{s}$ up to $11.9~\text{Trad}/\text{s}$, which is confirmed by our single-shot ultrafast frame imager based on noncollinear optical-parametric amplification with its highest frame rate of 15 trillion frames per second (Tfps). This work is carried out at a low repetition rate. Therefore, it can be applied at relativistic, even ultrarelativistic, intensities, which usually operate in low repetition rate ultrashort and ultraintense laser systems. We believe that it may have application in laser-plasma-based accelerators, strong terahertz radiations and celestial phenomena.
noncollinear optical-parametric amplification rotating rate ultrafast frame imager ultrafast intensity-rotating optical field 
High Power Laser Science and Engineering
2020, 8(1): 010000e3
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
2 International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Engineering Technology Research Center for 2D Material Information Function Devices and Systems of Guangdong Province, Shenzhen University, Shenzhen 518060, China
This paper presents a complete two-step phase-shifting (TSPS) spectral phase interferometry for direct electric-field reconstruction (SPIDER) to improve the reconstruction of ultrafast optical fields. Here, complete TSPS acts as a balanced detection that can not only remove the effect of the dc term of the interferogram, but also reduce measurement noises, and thereby improve the capability of SPIDER to measure the pulses with narrow spectra or complex spectral structures. Some prisms are chosen to replace some environment-sensitive optical components, especially reflective optics to improve operating stability and improve signal-to-noise ratio further. Our experiments show that the available shear can be decreased to 1.5% of the spectral width, which is only about $1/3$ compared with traditional SPIDER.
electric-field reconstruction shearing interferometry spectral phase ultrashort laser pulse 
High Power Laser Science and Engineering
2019, 7(1): 01000e13
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
2 SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state change along the azimuthal axis, while its sign stands for the rotating direction of the polarization. Here, a couple of liquid crystal Pancharatnam–Berry optical elements (PBOEs) have been used to introduce conjugated spatial phase modulations for two orthogonal circular polarization states. Applying these PBOEs in a 4-f optical system, our experiments show the setup can work for PTC sorting with a separation efficiency of more than 58%. This work provides an effective way to decode information from different PTCs, which may be interesting in many fields, especially in optical communication.
Polarization Berry's phase Diffraction theory Multiplexing 
Photonics Research
2018, 6(5): 05000385
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
2 SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
To seek high signal-to-noise ratio (SNR) is critical but challenging for single-shot intense terahertz (THz) coherent detection. This paper presents an improved common-path spectral interferometer for single-shot THz detection with a single chirped pulse as the probe for THz electro-optic (EO) sampling. Here, the spectral interference occurs between the two orthogonal polarization components with a required relative time delay generated with only a birefringent plate after the EO sensor. Our experiments show that this interferometer can effectively suppress the noise usually suffered in a non-common-path interferometer. The measured single-shot SNR is up to 88.85, and the measured THz waveforms are independent of the orientation of the used ZnTe EO sensor, so it is easy to operate and the results are more reliable. These features mean that the interferometer is quite qualified for applications where strong THz pulses, usually with single-shot or low repetition rate, are indispensable.
Far infrared or terahertz Ultrafast measurements Electro-optical devices Spectroscopy, terahertz Interferometry 
Photonics Research
2018, 6(3): 03000177

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!